Factsheets der KLAR! Regionen -

Infos zum KLAR! Programm

© Hans Ringhofer

"Die Arbeit mit den KLAR! Regionen ist ein wahres Erfolgskonzept, das auch international Anerkennung findet. Wir helfen Regionen, sich auf die Herausforderungen des Klimawandels vorzubereiten. Auf Gemeindeebene zeigen diese vor, was möglich ist und wirken damit als Vorbilder für andere Regionen in Österreich und in der Welt."

> DI Ingmar Höbarth, Geschäftsführer des Klima- und Energiefonds

Klimawandelanpassungsaktivitäten zielen darauf ab, die Verwundbarkeit natürlicher und menschlicher Systeme gegenüber der Klimaänderung zu reduzieren und die Widerstandsfähigkeit zu erhöhen. Wichtig ist dabei auch, dass potenzielle Chancen erkannt und genutzt werden. Genau hier setzt das Förderprogramm "Klimawandel-Anpassungsmodellregionen" (KLAR!) des Klima- und Energiefonds an.

Durch ein mehrstufiges Programm setzen sich die KLAR! Regionen gezielt und vorausschauend mit dem Klimawandel in Ihrer Region auseinander. Sie erkennen Risiken und Chancen und setzen konkrete Maßnahmen, um die Regionen zukunftssicher zu machen. Das Programm ist mit laufenden Aktivitäten auf Bundes- und Landesebene abgestimmt, leistet einen Beitrag zur #mission2030 sowie zur Österreichischen Strategie zur Anpassung an den Klimawandel. Weitere Informationen sind auf www.klimafonds.gv.at sowie klar-anpassungsregionen.at/ zu finden.

Datenquellen

Beobachtungsdaten (Vergangenheit):

SPARTACUS Gitterdatensatz der Zentralanstalt für Meteorologie und Geodynamik.

Klimamodelldaten (Zukunft):

STARC-Impact Klimamodellsimulationen basierend auf EURO-CORDEX Klimamodellsimulationen aus ÖKS15. Dargestellt sind zwei "Repräsentative Konzentrationspfade" (RCP, nachzulesen im IPCC-AR5: www.ipcc.ch/report/ar5/syr/).

Bezugsquelle der ÖKS15 und STARC-Impact Daten:

data.ccca.ac.at/group/oks15 data.ccca.ac.at/group/starc-impact

Impressum

Auftraggeber

Klima- und Energiefonds Gumpendorfer Straße 5/22, 1060 Wien

Auftragnehmer, Serviceplattform

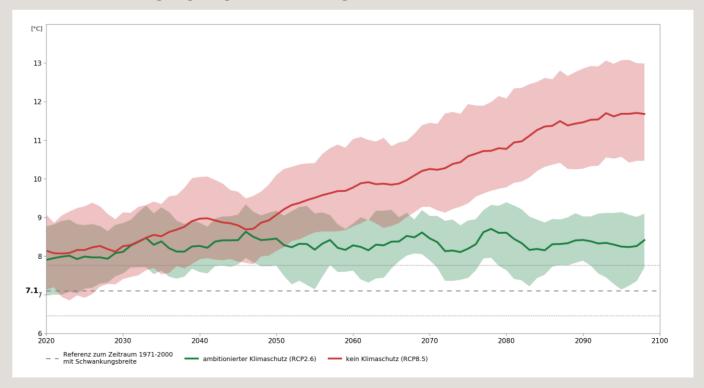
Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien

Inhaltliche Ausarbeitung, Grafiken, Tabellen

Zentralanstalt für Meteorologie und Geodynamik Abteilung für Klimaforschung Hohe Warte 38, 1190 Wien

Oktober 2019

KLIMA IM WANDEL powered by king to hear the powered by king the hear the powered by king to hear the powered by ki


KLAR! Graz-Umgebung Nord

Das Klima unserer Erde ändert sich, was auch in der KLAR! Graz-Umgebung Nord zunehmend zu spüren ist. Neue Risiken treten auf, wie etwa häufiger werdende Niederschlagsextreme mit all ihren Folgen, wie beispielsweise winterliche Überschwemmungen am 6. Februar 2017 in Deutschfeistritz. Gleichzeitig steigt aber auch das Dürrerisiko. Der immer weiter voranschreitende Klimawandel in der Region wird im Folgenden anhand unterschiedlicher Klima-Kenngrößen dargestellt.

Zukünftige Entwicklung der mittleren Jahrestemperatur in der KLAR! Graz-Umgebung Nord

Die mittlere Jahrestemperatur in der KLAR! Region lag zwischen 1971 und 2000 bei 7,1 °C. Messdaten zeigen, dass die Temperatur kontinuierlich steigt; das Jahr 2018 lag bereits 1,8 °C über diesem langjährigen Mittelwert. Darüber hinaus wird die mögliche Entwicklung der Temperatur bis zum Ende des 21. Jahrhunderts anhand der roten und grünen Linie veranschaulicht. Ohne Anstrengungen im Klimaschutz verfolgen wir den roten Pfad, auf dem wir uns derzeit befinden. Dieser Pfad bedeutet einen weiteren Temperaturanstieg um etwa 4 °C. Mit ambitioniertem Klimaschutz schlagen wir den grünen Pfad ein, der die weitere Erwärmung langfristig auf etwa 1 °C begrenzt.

ZUKÜNFTIGE KLIMAÄNDERUNG FÜR DEN ZEITRAUM 2021-2050

Eine Reihe von Klima-Kenngrößen wird sich zukünftig in der KLAR! Graz-Umgebung Nord ändern. Im Nachfolgenden werden einige speziell ausgewählte Kenngrößen als 30-jährige Mittelwerte dargestellt. Einzelne Jahre können stark vom Mittelwert abweichen, daher wird zusätzlich die mögliche Bandbreite der Änderung für das Szenario ohne Klimaschutz angegeben. Diese Darstellung beinhaltet aber keine Extreme!

Die am besten berechenbare Kenngröße für den Klimawandel ist die Temperatur, deren Verlauf sich in den einzelnen Szenarien bis 2050 nicht markant unterscheidet. Der Grund dafür ist, dass das Klima auch bei großen Anstrengungen im Klimaschutz erst 20 bis 30 Jahre nach Beginn dieser Bemühungen spürbar reagiert. Somit treten markante Unterschiede erst ab etwa 2050 und später auf.

Rot umrahmte Boxen zeigen Kenngrößen, deren Änderung in der Region zu Herausforderungen führen. Grün umrahmte Boxen zeigen Kenngrößen, deren Änderungen in der Region Chancen bieten können.

Mittleres Temperaturmaximum (Sommer)		
Vergangenheit	Änderung für die Klimazukunft	
22,2 °C	kein Klimaschutz	Max +2,0 °C +1,1 °C Min +1,0 °C
	ambitionierter Klimaschutz	+0,9 °C
1971-2000	2021-2050	

Mittlere Tageshöchsttemperatur im Sommer (Juni-August)

Hitzetage (Jahr)		
Vergangenheit	Änderung für die Klimazukunft	
2 Tage	kein Klimaschutz	Max +8 Tage
		+4 Tage
		Min +4 Tage
	ambitionierter Klimaschutz	+3 Tage
1971-2000	2021-2050	

Tageshöchsttemperatur erreicht mehr als +30 °C (pro Jahr)

Kühlgradtagzahl (Jahr)		
Vergangenheit	Änderung für die Klimazukunft	
53°C	kein Klimaschutz	Max +200 % +117 % Min +84 %
	ambitionierter Klimaschutz	+81 %
1971-2000	2021-2050	

Jährliche Summe der Differenz zwischen Raum- (+18,3 °C) und Außentemperatur an Tagen mit einer Tagesmitteltemperatur über +18,3 °C

Das bereits aus den letzten Jahren spürbar hohe Temperaturniveau wird sich in Zukunft noch weiter erhöhen. In gleichem Maße werden auch die täglichen Temperaturmaxima im Sommer um mehr als 1 °C ansteigen. Diese zunehmende sommerliche Überhitzung wird für neue Herausforderungen für Mensch, Tier und Pflanzen sorgen. Insbesondere die Schaffung eines angenehmen Klimas im öffentlichen Raum und in öffentlichen Gebäuden wird zunehmend wichtig.

Mit den steigenden Temperaturen steigt auch die Anzahl der Hitzetage pro Jahr stark an, auf etwa 6 Tage, was zu einer Erhöhung der Hitzebelastung in den Tallagen der Region Graz-Umgebung Nord führt. Das weiterhin kaum bis nicht Auftreten von Tropennächten bietet somit auch künftig nächtliche Erholung von der Tageshitze. Das führt zu vermehrter Hitzebelastung mit Auswirkungen auf die Gesundheit der Bevölkerung.

Das höhere Temperaturniveau führt auch zu einer deutlichen Erhöhung der Kühlgradtagzahl um +117 %. Daher ist die Zunahme des Energiebedarfs, der für den steigenden Kühlbedarf erforderlich ist, nicht zu vernachlässigen. Dieser wird jedoch mehr als wettgemacht, da die Heizgradtagzahl künftig markant abnehmen und daher der Energiebedarf fürs Heizen im Winter sinken wird.

Heizgradtagzahl (Jahr)		
Vergangenheit	Änderung für die Klimazukunft	
4023	kein Klimaschutz	Max -16 % -11 %
UocU		Min -7 %
	ambitionierter Klimaschutz	-8 %
1971-2000	2021-2050	

Jährliche Summe der Differenz zwischen Raum- (+20 °C) und Außentemperatur an Tagen mit einer Tagesmitteltemperatur unter +12 °C

Maximaler Tagesniederschlag (Jahr)		
Vergangenheit	Änderung für die Klimazukunft	
54 mm	kein Klimaschutz	Max +27 % +16 % Min +3 %
	ambitionierter Klimaschutz	+13 %
1971-2000	2021-2050	

Jährlich größte Tagesniederschlagssumme

Trockenheitsindex (Sommer)		
Vergangenheit	Änderung für die Klimazukunft	
	kein Klimaschutz	Max 4
alle		6
1 0		Min 12
Jahre	ambitionierter Klimaschutz	8
1971-2000	2021-2050	

Jährlichkeit eines Trockenereignisses im Sommer (Juni-August)

Im Gegensatz zur Kühlgradtagzahl führt das höhere Temperaturniveau führt zu einer deutlichen Abnahme der Heizgradtagzahl um -11%. In absoluten Zahlen ist das wesentlich mehr als die Zunahme an Kühlenergiebedarf. Der Energiebedarf für das Heizen und Kühlen zusammengenommen wird also geringer, was nicht nur der Bevölkerung, sondern auch dem Klimaschutz zugutekommt.

Extreme Niederschläge werden häufiger und intensiver, liegen aber in naher Zukunft immer noch im Bereich der bekannten Schwankungen. Dies betrifft einerseits großflächige Ereignisse, wie beispielsweise den aus den 1990er Jahren bekannten Landregen oder die großen Ereignisse 2002, 2005, 2009 oder 2013. Andererseits werden auch Gewitter und ihre negativen Folgen wie Hagel, Hangwässer, Bodenerosion, Vermurungen und Windwurf voraussichtlich häufiger.

Der Trockenheitsindex bildet vereinfacht den Bodenwasserhaushalt ab, die Eingangsgrößen sind Niederschlag und Verdunstung. Als Referenz in der Vergangenheit dient ein Dürreereignis, welches im statistischen Sinne nur alle 10 Jahre vorkommt. Mit einer Abnahme der Jährlichkeit in Zukunft auf 6 Jahre sind Dürreereignisse im Sommer deutlich häufiger zu erwarten. Das stellt besonders für die Land- und Forstwirtschaft vor neue Herausforderungen.

Temperaturbezogene Klima-Kenngrößen sind vertrauenswürdiger, weil die Temperatur von den Klimamodellen besser abgebildet wird als der Niederschlag. Dieser ist generell mit hohen Schwankungen behaftet, daher lassen sich für den Niederschlag im Allgemeinen weniger zuverlässige Aussagen treffen.

Legende

Szenarien: Klimamodellsimulationen zur Abbildung möglicher Zukunftspfade. Die hier dargestellten Szenarien sind:

- kein Klimaschutz: "business-as-usual" Szenario (RCP8.5)
- ambitionierter Klimaschutz: Szenario, das in etwa dem Übereinkommen von Paris entspricht (RCP2.6)

Vergangenheit: Referenzwert aus Beobachtungsdatensätzen als Mittelwert für den Zeitraum 1971-2000.

Änderung für die Klimazukunft: Mittlere Änderung für die einzelnen Klimamodellsimulationen für die nahe Zukunft (2021-2050) gegenüber der Vergangenheit (1971-2000). Dieser Wert muss zu jenem der Vergangenheit hinzugefügt werden.